
1 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

Handscript: The Poplet Programming Language

I. Overview
Introduction
A Poplet module is a Palm OS application that (1) is launched from the Palm OS
command bar, and (2) executes on top of another Palm OS application.
Handscript is the programming language for creating Poplet modules. It is a
simple language based on Javascript, the language embedded within HTML and
executed by web browsers to create dynamic web pages. One of the major
application areas for Poplet modules is to customize Palm OS applications to
more quickly access web information.

The Poplet Kit is the handheld device resident software for creating, configuring
and executing Poplet modules. You will need the Poplet Kit installed on your
Palm OS device to try the Handscript examples presented here.

The Poplet Kit makes every text field in every application capable of executing
Handscript expressions. After installing the Poplet Kit, launch any application
that contains a text field (for example, Memo Pad). Enter the expression 1+2*3
into the text field and highlight that text. Popup the command bar and you will
see an equal sign button (“=”) which the Poplet Kit adds to the command bar.
Tap that button. The result of evaluating the expression is inserted into the field.
Congratulations, you are programming in Handscript!

Your First Poplet Module
A Poplet module that is launched from the command bar must have a function
called main which has a single argument. For your first Poplet module you will
need only this one function.

Start the Poplet Kit in the Poplet Module Hierarchy form showing the list of
poplets on your handheld computer. The leftmost of the three pushbuttons will
be selected. Tap the “New” button. You will be prompted to enter the name of a
new Poplet module. Call it First. After creating the First Poplet module, you will
be in the function list form with title First, with the second of the three
pushbuttons selected. There are no functions in the list. Again, tap the “New”
button. You will be in the function editor form displaying the following text:

function _new_(){
}

The text _new_ will be selected. Type in the characters main replacing the
selection. In the parentheses, insert the name of the argument, call it arg. Insert
a new line between the first and second lines with the text ‘^”Hello World!”;’.

2 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

After you are finished, the text should look as follows:

function main(arg){
 ^"Hello World!";
}

Tap the “Check” button to syntax check the function. If there is an error, a dialog
box with an error message will pop up. After dismissing the dialog box, the
insertion point is set at the position of the error in the code. When there is no
error, the message “OK!” is briefly flashed to the right of the “Check” button.

You have just created the prototypical first application Hello World, and it’s ready
to run. Bring up the command bar, tap the Poplet button and select “First” from
the Poplet menu. You should get a dialog box with the Hello World text. You
now have a complete Poplet module stored in its own database named
“First.pop”. It can be copied or beamed to another Palm OS device.

Your Second Poplet Module
We will build on the concepts of Poplet module First. Create another new Poplet
module named Second. Enter the following main function:

function main(arg){
 if (#arg==0) ^"There is no text selection";
 else ^("The selection is: " + arg);
}

Poplet module Second displays the currently selected text, or if none, a message
saying there is no selection. In two lines of new code we have exposed several
new concepts:

1. What is the value of arg, the argument to the main function.
2. The # operator.
3. The == operator.
4. String concatenation with the + operator.
5. The if else statement.

The argument to the main function, arg, is a string containing the currently
selected text in the field that has focus in the current application. This makes it
easy to create poplets that process the current selection. If there is no field with
focus, or no selection, the argument is the empty (zero-length) string.

The unary # operator computes the size of a string or array. For a string, it gives
the number of characters in the string. For an array, it gives the number of
elements contained within the array.

The == operator compares two values for equality, giving result true if they are
the same and false if they are different. In the function above, we are testing

3 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

whether the number of characters in arg is 0. The words true and false in
Handscript are simply synonyms for the numbers 1 and 0, respectively.

The result computed by the + operator depends on the types of its operands. If
both operands are numbers, it computes the sum of the numbers. If either
operand is a string, the other operand will be converted to a string if necessary,
and the two strings will be concatenated. For example, “Hello “ + “World!”
produces “Hello World!”.

The if and else statements are control structures. They control whether other
statements are executed based on values of expressions. In our example, if the
length of the arg string is zero, the first “^” statement is executed. If the length of
the arg string is not zero, the second “^” statement is executed.

If You Know Javascript
With the popularity of the World Wide Web and the large number of people
creating web pages, there are many people who don’t consider themselves
programmers but who have some experience writing Javascript code. If you
understand Javascript even a little, Handscript should be easy to learn. Briefly,
Handscript is Javascript minus a few features that impact performance and plus
a few features that make it easier to use on a small-screen device.

How Handscript and Javascript are Similar

Handscript and Javascript have many similarities:

1. They have the same syntax. For example:

function big(){
 return 10e100;
}

2. They have the same statements. For example:

for (i=0; i<limit; i++){
 if (a[i] > max)
 max = a[i];
}

3. They have the same comments. For example:

//This is a comment
/*This is also …
 … a comment */

4 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

4. They are dynamically typed. There are no type declarations. The type of
a variable is determined at runtime by the type of value it contains.
Elemental types are number, string and array. Variables can contain
different type at different times. For example:

 x = 50; //x contains a number

 x = "results"; //now x contains a string

5. They have automatic memory management. Allocation and freeing of
memory is handled automatically. It is not part of the logic of a program.
For example:

 good = "good";
 bad = "bad";

answer = good + " and " + bad;
if (score<70)
 answer = good + ", " + bad + " and ugly";
return answer;

The code above creates the string “good and bad”, which is unused when
score is less than 70. The language implementation automatically
reclaims the memory (garbage collects) containing this unused value.

6. They have “associative arrays”. In addition to integer indexes, arrays can
be indexed by strings and non-integral numbers. These arrays are useful
for “associating” related values, as follows:

firstName["Bush"] = "George";
firstName["Gore"] = "Al";
…

7. Arrays can be accessed with “dot” notation:
person.first = “Sam”;
person.last = “Adams”;

The code above is equivalent to:
person[“first”] = “Sam”;
person[“last”] = “Adams”;

8. They have “objects”, enhanced arrays that have functions associated with
them.

How Handscript and Javascript are Different

Handscript has the following features not in Javascript:

5 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

1. Poplet modules introduce modularity. A Poplet module is a group of
functions contained in a database. Function calls can be both within-
module and cross-module. For example, the Math Poplet module defines
elemental mathematical functions such as square root. The square root
function is called from a module other than Math as follows:

answer = Math.sqrt(x*x + y*y);

The module name qualifier is optional for within-module calls. The two
functions calls below are equivalent if they occur in the Brackets module:

field = Brackets.getField(arg);

field = getField(arg);

2. Array initializers are a concise way to create arrays. Arrays are created in

Handscript using braces containing comma-separated values. For
example:

testScores = {75, 91, 86, 88};

names = {{"Pete", "Smith"}, {"Joe", "Starky"}};

answer = { }; //this array has no elements

Array initializers can specify non-integer indices. The firstName example
above can be simplified with the following equivalent version:

firstName = {"Bush": "George", "Gore": "Al"};

The term “array initializer” is from C, where they are restricted to
initialization contexts. In Handscript, an array initializer can be used in any
expression context.

3. Global variables are explicit. Handscript global variables begin with an
uppercase letter, so there can’t be an inadvertent confusion with a local
variable. In Javascript, global variables are those not defined in a var
statement. With a small screen device, it could require a lot of scrolling to
scan for var statements.

A = B+1; //these are global variables
a = b+1; //these are local variables

4. Subscript operators also apply to strings. Handscript allows brackets to

subscript strings as well as arrays. The result of subscripting a string is a
number, the ASCII character value at the character position. The first

6 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

character in a string has index 0. The following 3 statements have the
same results:

 c = "abcdef"[1];

 c = 0cb;

 c = 0x62;

Substrings may be obtained with the “..” slice operator. For example:

 s = "abcdef"[1..1]; //assigns "b" to s

 s = "abcdef"[2..4]; //assigns "cde" to s

5. There are concise operators for frequent operations. Handscript defines
two frequently used unary operators: # and ^. The # unary operator
computes the number of elements in an array or string. For example:

s = "now is the time";
a = {"now", "is", "the", "time"};
sSize = #s; //it’s 15
aSize = #a; //it’s 4

The ^ unary operator displays the operand value in a dialog box. For
example:

^"Cant take square root of negative number";

6. The ability to call outside the language. Handscript contains provisions for
Palm OS and C library calls. See Section III, “OS and C Calls”.

Javascript has the following features not in Handscript:

1. The with statement. The Javascript with statement allows expressions
contained within it to be simplified, by defining the default object to use in
unqualified function calls and variable accesses.

2. Prototype chains for defining object inheritance. Handscript uses a
simpler “module hierarchy” based inheritance scheme.

If You Know C
C is the language used to specify interfaces to the Palm OS, and to many other
platforms. Most Palm OS applications are coded in C. C is a professional
programmer’s language. It is both low level and sophisticated. If you know C,
Handscript will be very easy to learn. The languages are syntactically similar and
semantically different.

7 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

How Handscript and C are Similar

Handscript and C have many similarities in syntax:

1. Expression operators and precedence are the same. For example:
i = j<i && j!=0 ? j : i;
results = ((mask^0x100)>>3)&0xFFE;

2. Many statements are the same. For example:
sort(a, i, j); //a function call
if (a[i]<a[j]){
 for (k=i; k<j; k++){
 if (a[i]==0) break;
 }
} else {
 do {
 if (a[i]>limit) continue;
 a[i] += 3;
 } while (i++<j);
}
return i+1;

3. Literals have the same syntax. For example:
 "One question remains.\nWill it work?"
 "\xFF"
 1.5e100
 0xFFFFFFFE
 02347

4. Comments are the same. For example:
//This is a comment
/*This is also …
 … a comment */

How Handscript and C are Different

Handscript and C have very different semantics. Handscript is a dynamicly-typed
language, where the type of value contained in a variable can change at runtime.
There are four types: number, string, array and undefined. The same variable
can hold different types at different times. Therefore, variables need not be
declared before they are used, since there is no information to specify in their
declaration.

The dynamic types are smart. There is a single type of number: 8-byte floating
point, compared to the many numeric types of C. Internally, 32-bit integer

8 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

operations are used to optimize performance when they are certain to yield the
correct results.

Arrays automatically grow when assigned with an index that hasn’t been used
before, rather than raise an exception or crash. So a typical way to create an
array is to assign to an element that doesn’t exist. For example:

squares = { }; //an empty array
for (i=0; i<10; i++) squares[i] = i*i;

Likewise, when an array is accessed and an element at the specified index does
not exist, the result is the value undefined, rather than an error or crash. For
example:

choices = {"stop", "go"};
return choices[4]; //returns undefined

In contrast, C is statically typed, with compile-time type checking. There are
numerous types of signed and unsigned integers, two floating point types,
structure types and union types. The emphasis is on maximizing performance,
minimizing footprint, and explicit control of storage layouts and memory
management. Variables must have their type declared before they are used.

C also contains macro facilities in #define and #include mechanisms that are
powerful, but can make it more difficult to comprehend a program. These
features are not present in Handscript.

9 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

II. Language Elements
The Big Picture
Handscript is a language for creating Poplet modules, applications which “pop
up” and execute concurrently with another application. A Poplet module consists
of one or more functions. A Poplet module can both serve as a pop up
application and serve as a function library for other modules.

A Poplet module function can also be called from Web Clipping Applications
using the Palmcall URL. The syntax of such an URL is:

palmcall:PPLT.appl?moduleName.functionName?argumentString

The function is called with argumentString as its single argument.

A Poplet module is realized as a Palm OS database (.pdb file) containing module
documentation and function source code. There is one record containing all the
documentation and one record per function.

The Poplet Kit is a Palm OS device resident interactive development and
execution environment for Poplets modules. It presents an organized view of all
Poplet modules and the elements of each module. It includes editors for the
module documentation and function source code, the ability to syntax check
functions, and the ability to configure the Poplet menu.

There is a set of “base modules” that are always present and cannot be changed.
These modules are not contained in separate databases, but are maintained
within the Poplet Kit prc. Their source code can be browsed, but not changed.
The base modules correspond to many of the built-in objects of Javascript. They
are: Object, Application, Array, C, Clip, Date, Math, Number, OS, String,
Undefined, URL and Window.

A function contains a series of statements. A statement includes one or more
expressions. An expressions consists of variables and literal values combined
with operators.

The Lexical Structure of Handscript
Handscript functions are written using ASCII characters.

Case Sensitivity
Handscript is case sensitive. Language keywords, variable names and function
names are distinguished based on the case of their constituent letters.
Keywords, for example if, must be written with all lower-case letters. The
names A1 and a1 identify different variables because of the different cases used.

10 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

Whitespace
Space, tab, newline and carriage return are “whitespace” characters. Except in
string literals, multiple whitespace characters are equivalent to a single
whitespace character in a Handscript function. Therefore you are free to use
whitespace to format your code to improve its readability.

Comments
Handscript supports both C style and C++ style comments. Text between //
and the end of line is ignored. Text between the characters /* and */ is
ignored. For example:

 // this is a comment
 /* this is …
 … a comment */
Literals
A literal is a direct representation of a data value in a program. Handscript has
number, boolean, character, string and undefined literals.

1. Integer Literals (Base 10)
These are represented as an optional minus sign followed by a sequence
of digits that does not begin with the digit zero. For example:

5
12000000

2. Octal Integer Literals (Base 8)
These are represented as an optional minus sign, followed by the digit
zero, followed by a sequence of digits, each between 0 and 7. Examples:

0377
-0100

3. Hexadecimal Integer Literals (Base 16)
These are represented as an optional minus sign, followed by 0x or 0X,
followed by a series of hexadecimal digits. A hexadecimal digit is one of
the digits 0 through 9, or the letters a through f (or A through F) which
represent values 10 through 15. Examples:

0x7FFF
0x1a000000

4. Floating Point Literals
Floating point literals differ from integer base 10 literals in that that have
either a decimal point or an exponent, or both. An exponent is an e
followed by an optional plus or minus sign, followed by a one to three digit
integer exponent. The number preceding the exponent is multiplied by 10
to the power of the exponent. Examples:

.5
1e1
.6666666666666

11 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

5. Boolean Literals

Boolean literals are true and false. true represents the integer value
1 and false represents the integer value 0.

6. Character Literals
Character literals are a single ASCII character preceded by 0c or 0C.
They represent a number whose value is the numeric value of their ASCII
character. Examples:

0cA
0C©

7. String Literals
String literals are any sequence of zero or more characters enclosed
within single or double quotes. Examples”

"Can’t open database"
"12.3"
'He said "Hello"!'

The backslash character \ is a special “escape” character in string and
character literals. Combined with the character that follows it, it
represents a character that is not otherwise representable in the string.
See the Table II-1 below.

Sequence Character
\b Backspace
\f Form feed
\n Newline
\r Carriage return
\t Tab
\' Single quote
\" Double quote
\\ Back slash
\xxx 3 octal digit

character code
Table II-1 Character Escape Sequences

8. Undefined Literal

The literal undefined represents the single value undefined, which is
distinguished from number, string and array values.

12 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

Identifiers
An identifier is a name for a variable or function. The first character must be a
letter or an underscore “_”. Subsequent characters may be a letter, digit or
underscore. Examples:

i
nameLength
_DmNextDatabaseByTypeCreator
x1

Keywords
Keywords have special meaning in the language and are not available for
variable and function names. The Handscript keywords are:

break continue div do else
false for if undefined return
true var while typeof new

Variables
A variable is a named holder or “slot” for a value. Variables allow you to
manipulate values by name. A variable can hold different values at different
times – hence the name variable. All variables are implicitly initialized to
undefined. The example below assigns the number 5 to variable n, then uses
the variable in a later computation:

n = 5;
newN = n+1;

Local Variables
Local variable names begin with a lower case letter or underscore. Local
variables are accessible only in the single function in which they are used.
The variables n and newN in the example above are local variables. Local
variables may be declared before they are used, in a var statement. For
example:

var x, y;
x = 5;
y = 0;
paintPixel(x, y);

A local variable persists only for the duration of execution of the function in which
it appears. When a function concludes, its local variables no longer exist.

Global Variables
Global variable names begin with an uppercase letter. A global variable persists
for the life of the application that contains it. Global variables are a means of
sharing values among different functions or different invocations of the same
function. For example:

CustomerName = "Acme Co.";
GetCustomerAddress();

13 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

GetCustomerOrders();

In the example above the functions GetCustomerAddress and
GetCustomerOrders can share the global variable CustomerName.

Types
HandScript values are one of four primitive types: number, string, array and
undefined, or a higher-level type: object. Numbers use 64-bit floating-point
representation. Strings are sequences of 8-bit Ascii values. Arrays are
containers for values of any type. The keyword undefined identifies a unique
value whose type is not number, string or array.

Each Poplet module defines a type of object. Modules are arranged in a
hierarchy, with Object at the top of the hierarchy. A module inherits the functions
of its supermodule.

HandScript is a "dynamically typed" language. That means that variables do not
have a fixed type associated with them, but instead are capable of containing
values of any type. The same variable can contain values of different types at
different times.

Numbers
Handscript numbers are represented internally using 8-byte IEEE floating-point
format. Handscript programs compute with numbers using the arithmetic
operators + for addition, - for subtraction, * for multiplication and / for division.
These and other numeric operators are explained later under Expressions and
Operators.

In addition to these operations, there is the Math poplet which defines many
basic mathematical functions. For example, the sine function can be called as
Math.sin(angle). And, since Handscript is extensible through the creation of
new Poplet modules, you can create new libraries of numeric functions.

Strings
A string is a series of ASCII characters. Earlier we saw that a literal string can be
specified by enclosing characters in double quotes. Strings are constants, they
cannot be changed. But, new strings can be created through concatenation and
slicing of existing strings. For example:

message = "Hello "+"World!"; //it’s: "Hello World!"
warning = "Can’t find database "+name;
string = "Where angels fear"[6..11]; //it’s "angels"

You can obtain the numeric value of a string character through subscripting. You
can obtain the size of a string with the # operator. For example:

str = "ABCDEF";
char = str[2]; //it’s 'C', or 67

14 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

length = #str; //it’s 6

Arrays – With Integer Indexes
The simple view of arrays is that an array is an ordered list of values, where the
values are indexed by integers beginning at 0. Arrays are created with initializers
and accessed via subscripts.

1. Array Initializers
An array initializer consists of a series of comma separated values
enclosed in curly braces. Examples are:
{} //an empty array
{3, 4, 5, 2, 5} //an array of numbers
{"sam", "joe"} //an array of strings
{{i, j}, {i+1, j-1}} //an array of arrays
{0, "contents", {2, 3}} //an array of mixed types

2. Array Access
Array contents are accessed via subscripting. The first element of an
array is at subscript position 0. For example:
names = {"sam", "joe"};
first = names[0]; //it’s "sam"
second = names[1]; //it’s "joe"
third = names[2]; //it’s undefined
names[2] = "pete";
third = names[2]; //now it’s "pete"

Arrays are flexible containers. They will grow to contain new elements. In
the example below, an empty array is assigned 10 elements. The array
automatically grows to contain the 10 elements.
a = {};
for (i=0; i<10; i++) a[i] = i*i;
// now, a == {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}

The # operator obtains the number of elements in an array. After the
example above completes, #a == 10.

Arrays – With Non-Integer Indexes
The more complete view of arrays is that an array is a collection of pairs of
indexes and values. An index is a number or a string. A value is a number,
string or array. Arrays are created with initializers and accessed via subscripts.

1. Array Initializers
An array initializer consists of a series of comma separated values or
index-colon-value-pairs enclosed in curly braces. Examples are:
{} //an empty array

{"sam", "joe"} //equivalent to the array below

15 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

{0:"sam", 1:"joe"} //value “sam” at index 0

{i+j, i-j, 20:i*j, i/j) //these two are equivalent
{0:i+j, 1:i-j, 20:i*j, 2:i/j}

{"first":"al", "last":"dugan",
 "tels": {"668-2000","776-0123"}}

Where a value appears without an associated index, the index is implied
as follows. From left to right, the first value without an index has implied
index 0. Each subsequent value without an index has implied index one
greater than the index of the preceding value without an index.

2. Array Access
In addition to numbers, array subscripts also can be strings. For example:
if (person["last"]=="dugan")

telephones = person["tels"];

The dot notation can be used to give an object-like array access. The
example above can be re-written:
if (person.last=="dugan")

telephones = person.tels;

Array entries can be removed by assigning undefined. For example:
a = {"pete", "mary", "tom"};
a[1] = undefined; //a now contains {0:"pete", 2"tom"}

The for in statement iterates over the indices of an array, so it handles
the results of deleted entries, as in the preceding example.

3. Array Databases
Array notation can be used to concisely create and access persistent
databases. The unary @ operator applied to a string creates an array
accessor to a database with name defined by the string. This database
can then be referred to as a subscripted array using the array accessor to
create and access its records. For example, the code below creates the
database named "Friends" containing 2 records.
db = @"Friends";
db["sam"] =

{"name": "sam smith", "kids": {"bill", "sally"}};
db["joe"] = {"name": "joe hill", "kids":{}};

After the database is created with this code, it can be queried as follows:
f = @"Friends";
f["sam"]["kids"] //this returns {"bill", "sally"}

A copy of an array database can be made simply as follows:

16 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

original = @"db1"; //get accessor to old database
copy = @"db2"; //create new database and accessor
for (i in original)

copy[i] = original[i]; //copy record

Undefined
Handscript undefined value indicates that it is not a number, string or array. It is
a convenient way for a function to indicate that it could not compute its intended
result. Rather than issuing an error message or returning a “special” number, the
function simply returns undefined.

As we have above with arrays, undefined avoids error messages for illegal
subscripts. When an array is subscripted with an index that doesn’t have an
associated value, the result is undefined.

Objects
Objects help reduce complexity in software systems by organizing the software
according to the different kinds of entities defined and processed. An “object” is
the result of bundling a data value and the associated code for processing that
data value. In Handscript, code is organized into a collection of Poplet modules
each of which defines a collection of functions. Therefore, a Handscript object is
a data value associated with a Poplet module. The object is said to be “an
instance” of the module. Every Handscript value is such an object.

Primitive Objects
Handscript values of type number, string, array and undefined are primitive
objects which are instances of Poplet modules Number, String, Array and
Undefined, respectively. These are base modules which are always present and
cannot be changed.

Higher-Level Objects
Higher-level Handscript objects are created with the unary new operator applied
to a string containing the name of the associated Poplet module. For example,

 cust = new "Customer";
 cust.name = "Acme Co.";
 cust.address = "30 Center St.";

The code above creates an object that is an instance of Poplet module
Customer, assigns it to the variable cust, and assigns values to the name and
address fields of the object. Objects created with the new operator have their
state accessed just like an array, either with the dot notation as illustrated above
or by subscripting.

17 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

Function Calls and the Target Object
Every function call has a target object which determines which code is invoked
by the call. The target can be either explicit or implied. An explicit target uses
the dot notation consisting of the target object, a period and the function name.
For example:

 cust.hasOrdered(productID)

The Poplet module of which the target object is an instance is examined to find a
function definition with the same name as the function in the call. When a
function call does not explicitly identify a target object, the target object is implied
to be the target object used by the function containing the function call. For
example,

function processOrderProduct(productID){
if (hasOrdered(productID))

 reorder(productID);
 else
 firstOrder(productID);
 }

The call to hasOrdered in the example above does not explicitly identify a target
object. In this case, the target object is the same as the target object of the
processOrderProduct function in which the call appears.

The Pseudo-Variable this
The pseudo-variable this used within a function definition identifies the target
object used in calling the function. The pseudo-variable this may be used as a
variable within a function, but it cannot be assigned to (appear on the left side of
an assignment statement). The following two expressions compute the same
value:

 hasOrdered(productID)
 this.hasOrdered(productID)

Global Variables
Global variables are automatically initialized at the beginning of an execution
session. The initial value assigned to a global variable depends on whether or
not the variable name is the same as a Poplet module name. If the global
variable name is the same as some Poplet module name, then the variable is
initialized to an object that is an instance of that Poplet module. This allows calls
to the functions in a Poplet module to be called from another module simply be
specifying the module name (as a global variable) as the target object. For
example,

 x = Math.sqrt(2);

18 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

If a global variable name is not the same as any Poplet module name, then the
global variable is initialized to the value undefined.

Inheritance and the Module Hierarchy
Handscript organizes Poplet modules into a hierarchy, where every module
except for Object has a single supermodule. Module Object is at the top of the
hierarchy and has no supermodule. This hierarchy is displayed in the Poplet Kit
using indentation to show the submodule relationship.

When any new Poplet module is created using the Poplet Kit, the new module
has module Object as its supermodule. Once a module is created, its
supermodule can be changed using the Poplet Kit.

The module hierarchy defines a function inheritance hierarchy, which is used to
resolve function calls. Inheritance works as follows. When a function f is called,
the target object of the call identifies the initial Poplet module to be searched for
a function definition with the name f. If that module contains a function f, then the
call is resolved and the matching function is used. If there is no matching
function f, then the supermodule of the initially searched module is considered.
Successive supermodules are searched until a matching function definition is
found or until the end of the supermodule chain is reached. In the latter case, the
function call cannot be satisfied and execution terminates with an error dialog.

For example, below is a partial module hierarchy and a list of functions
implemented in each module.

Module Name
Object
 Loan
 PQALoan

Functions Implemented
eval, parseFloat, parseInt, toString, unescape, valueOf
formatResults, main, payment, payments
formatResults

The code for function main in module Loan is as follows:

 function main(arg){
 //Display loan payment table
 //Prompt for principal amount
 s = Window.prompt(
 "Enter principal amount", "");
 p = parseFloat(s);
 if (typeof p != "Number"){//not #
 ^"Enter a number";
 return;
 }
 rates = {6.0, 6.5, 7.0, 7.5, 8.0};
 times = {20, 30, 40};

19 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

 a = payments(p, rates, times);
 formatResults(a);
 }

The function above is called in two different ways in the following code:

 Loan.main("");
 PQALoan.main("");

In the first function call above the target object is an instance of module Loan. In
the second function call above the target object is an instance of module
PQALoan. Both of these calls cause invocation of function main defined in
module Loan.

Where the results of these two function calls differ is in the call to function
formatResults. The first main call has an instance of module Loan as target, so
the formatResults call invokes the function defined in module Loan. The
second call has an instance of module PQALoan as target, so the
formatResults call invokes the function defined in module PQALoan.

This example illustrates the major benefit of inheritance. Module PQALoan
reuses most of the functionality of module Loan, and supplies a different
implementation for a small portion. It reimplements formatResults to
generate a PQA to display results, rather than generate text field contents as
does module Loan.

Expressions and Operators

Expressions
An expression is a piece of Handscript code that is evaluated to produce a value.
If you are familiar with Javascript, Java or C, Handscript expressions are very
similar. The simplest expressions consist of a single constant or variable. For
example:

2.5e4 //a numeric literal
"I can’t do that!" //a string literal
undefined //the undefined literal
true //a boolean literal
x //a local variable
Form //a global variable

The value of a constant expression is the value of the constant itself. The value
of a variable expression is the value contained within the variable.

20 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

More complex expressions involve operators combining simpler expressions.
For example, we saw that x is an expression and 2.5e4 is an expression, so the
following is also an expression:

x + 2.5e4

The value of this expression is determined by adding the values of the two
simpler expressions. The plus sign is an operator used to combine two operand
expressions into a result value. Another operator is * which is used to combine
expressions by multiplication. For example:

(x + 2.5e4) * x

This expression uses the * operator to multiply the value of the x variable by the
value of the previous expression x + 2.5e4.

Operator Overview
Operators compute a result using their operands. Table II-2 below summarizes
the characteristics of all Handscript operators. Operators precedence
determines the order in which operators are perfomed. Higher precedence
operators are performed before lower precedence operators. For example:

a = b + c * d;

The multiplication operator * has higher precedence than the addition operator +,
so the multiplication is performed before the addition. The assignment operator =
has the lowest precedence, and so the assignment is done after the expression
on the right is computed.

The associativity of an operator is either right or left. It determines the order in
which operators of the same precedence are performed. For example:

a = b + c – d;

is the same as:
a = ((b + c) – d);

because the addition/subtraction operators have left associativity. On the other
hand, the following expression:

a = b = c = 20;

is equivalent to:
a = (b = (c = 20));

because the assignment operator has right associativity.

21 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

Prece-
dence

Operator Operand Types Operation Performed Associ-
ativity

15 [] array/string,
number/string

subscript left

15 () function, args function call left
14 ++ number pre or post increment right
14 -- number pre or post decrement right
14 - number unary minus right
14 ~ number bitwise complement right
14 ! number (boolean) logical complement right
14 ^ any alert box right
14 # array/string number of elements right
13 * number, number multiplication left
13 / number, number division left
13 div number, number integer division left
13 % number, number integer remainder left
12 + number, number addition left
12 - number, number subtraction left
12 + string, any or

any, string
string concatenate left

11 << number, number left shift left
11 >> number, number right shift left
10 < numbers or strings less than left
10 <= numbers or strings less than or equal left
10 > numbers or strings greater than left
10 >= numbers or strings greater than or equal left
9 == numbers or strings

or undefined, any
equal left

9 != numbers or strings
or undefined, any

not equal left

8 & number, number bitwise and left
7 ^ number, number bitwise exclusive or left
6 | number, number bitwise or left
5 && boolean, boolean logical and left
4 || boolean, boolean logical or left
3 ? : boolean, any, any conditional right
2 = variable, any assignment right
2 *=, /=, div=,

+=, -=, <<=,
>>=, &=,
^=, |=

variable, number
(except += is
variable, any)

assignment with
operation

right

1 , any multiple evaluation left
Table II-2 Operator Characteristics

Arithmetic Operators
1. Add: +

If both operands to the + operator are numbers, the result is the sum of
the operands. If either operand is a string, the other operand is converted
to a string and the result is a new string that is the concatenation of the
first string and the second string.

2. Subtract: -

22 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

The – operator gives the result of subtracting the second operand from the
first operand. Both operands must be numbers.

3. Multiply: *
The * operator gives the result of multiplying its two operands. Both
operands must be numbers.

4. Divide: /
The / operator gives the result of dividing the first operand by the second
operand. Note that results are not forced to be an integer. Both operands
must be numbers.

5. Integer Divide: div
The div operator converts both operands to integers , then gives the
result of dividing the first operand by the second operand. The result is an
integer. Both operands must be numbers.

6. Modulo: %
The % operator converts both operands to integers, then gives the result
of the remainder of dividing the first operand by the second operand. The
result is an integer. Both operands must be numbers.

7. Unary Minus: -
The – operator, used as a unary operator, gives the result of negating the
single operand. The operand must be a number.

8. Increment: ++
The ++ operator does two things: it adds 1 to its single operand and it
gives a result. The operand must be a variable or an array element which
contains a number. The result is either the incremented operand value or
the original operand value depending on whether the ++ operator
precedes or follows its operand. The example below shows the two
cases:

j = 5; //j contains 5
m = j++; //m contains 5, j contains 6
n = ++j; //n contains 7, j contains 7

9. Decrement: --
The -- operator does two things: it subtracts 1 from its single operand and
it gives a result. The operand must be a variable or an array element
which contains a number. The result is either the decremented operand
value or the original operand value depending on whether the -- operator
precedes or follows its operand. The example below shows the two
cases:

j = 5; //j contains 5
m = j--; //m contains 5, j contains 4
n = --j; //n contains 3, j contains 3

Comparison Operators

1. Equals: ==
The result of the equal operator is true (1) if the two operands are equal
and false (0) if they are not equal. Strings can be compared to strings,
numbers to numbers and undefined to any type. Arrays only can be

23 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

compared to undefined. Undefined compares equal to undefined, and not
equal to anything else. Two strings are equal if they have the same length
and they have identical characters at every position. Two numbers are
equal if they have exactly the same value.

2. Not Equals: !=
The != operator computes the exact opposite of the == operator. If the
result of comparing two operands for == is true, the result for comparing
the same operands with != is false, and vice-versa.

3. Less Than: <
The result of the < operator is true if the first operand is less than the
second operand, otherwise the result is false. The operands must be
either both numbers or both strings. String are ordered alphabetically, i.e.,
it is a caseless compare.

4. Greater Than: >
The result of the > operator is true if the first operand is greater than the
second operand, otherwise the result is false. The operands must be
either both numbers or both strings. String are ordered alphabetically, i.e.,
it is a caseless compare.

5. Less Than or Equal: <=
The result of the <= operator is true if the first operand is less than or
equal to the second operand, otherwise the result is false. The operands
must be either both numbers or both strings. String are ordered
alphabetically, i.e., it is a caseless compare.

6. Greater Than or Equal: >=
The result of the >= operator is true if the first operand is greater than or
equal to the second operand, otherwise the result is false. The operands
must be either both numbers or both strings. String are ordered
alphabetically, i.e., it is a caseless compare.

Logical Operators
The logical operators require numeric operands and they perform boolean
algebra on them. For the purpose of these operations, any non-zero value is
considered to be true, and zero is false.

1. Logical And: &&
The result of && is true if both operands are true, otherwise the result is
false. If the first operand evaluates to false, the second operand is
guaranteed not to be evaluated, because the result is known. This is
useful in certain situations. For example:

if (n!=0 && total/n>average) m++;
The example prevents a divide by zero with the first test.

2. Logical Or: ||
The result of || is true if at least one of the operands are true, otherwise
the result is false. If the first operand evaluates to true, the second
operand is guaranteed not to be evaluated, because the result is known.

3. Logical Not: !
The ! operator is a unary operator. The result of the ! operator is true if its
operand is false, and false if its operand is true.

24 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

Bitwise Operators
The bitwise operators require numeric operands and return a numeric result.
Both operands are converted to 32-bit integers before the operation is done. The
result of the bitwise operators is always an integer.

1. Bitwise And: &
The result of the & operator is the boolean and of the two operands. A bit
is set in the result value only if the corresponding bit is set in both
operands.

2. Bitwise Or: |
The result of the | operator is the boolean or of the two operands. A bit is
set in the result value if the corresponding bit is set in one or both of the
operands.

3. Bitwise Exclusive Or: ^
The result of the ^ operator is the boolean exclusive-or of the two
operands. A bit is set in the result value only if the corresponding bit is
different in the two operands.

4. Bitwise Not: ~
The ~ operator is a unary operator. The result of the ^ operator is to
reverse all the bits of the operand. A bit is set in the result value only if it
is not set in the operand.

5. Shift Left: <<
Let n be the value of the second operand. The result of the << operator is
the rightmost 32 bits of the first operand multiplied by (2 to the power n).

6. Shift Right: >>
Let n be the value of the second operand. The result of the >> operator is
the first operand divided by (2 to the power n).

Assignment Operators
There have been numerous examples of the = assignment operator. The
first operand must be either a variable or a subscripted array element.
The second operand is the value to be assigned to the variable or array
element. Assignment is also an expression whose result is the value of
the right operand. For example;

x = y = z = 0; //multiple assign of single value
if ((a=b+c)>limit) //assign within comparison
 return a-1;

The operators = and == are easy to confuse, so be careful to distinguish
them. The = operator is for assignment, the == operator for comparison.

There are several additional assignment operators that perform a
computation of the value to be assigned. Here are examples of them:
 a += 2; //equivalent to a = a + 2;
 a -= 2; //equivalent to a = a - 2;
 a *= 2; //equivalent to a = a * 2;
 a /= 2; //equivalent to a = a / 2;

25 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

 a div= 2; //equivalent to a = a div 2;
 a %= 2; //equivalent to a = a % 2;
 a <<= 2; //equivalent to a = a << 2;
 a >>= 2; //equivalent to a = a >> 2;
 a &= 2; //equivalent to a = a & 2;
 a |= 2; //equivalent to a = a | 2;
 a ^= 2; //equivalent to a = a ^ 2;

Miscellaneous Operators

1. Conditional: ? :
The ? operator is the only three operand operator. The first operand is a
boolean value used to choose the second or third operand as the result. If
the first operand is true, the second operand is the result; if it is false the
third operand is the result. For example:

max = n>m ? n : m; //pick the greater of n and m

2. Number Elements: #
The # operator is a unary operator. The operand must be a string or an
array. The result of the # operator is the number of elements in the string
or array.

3. Display Alert: ^
Earlier we saw that ^ used as a binary operator computes the exclusive-or
of its operands. When used as a unary operator ^ displays the operand in
an alert box. The operand can be any type. This is useful for inserting
debugging code to concisely dislplay a string. But, remember that unary
operators have high precedence, so that if you want to display the value of
a computation, you will most likely need parentheses. For example:

j = 5;
^"j="+j; //displays "j=" in alert box
^("j="+j); //displays "j=5" in alert box

4. Comma: ,

The comma operator computes the left operand, then returns the result of
computing the right operand. Its purpose is to combine what would be
multiple statements into a single statement. This is sometimes useful in
the for statement (see below). For example:

i=10, j=5, k=3; //this is a single statement
i=10; j=5; k=3; //these are 3 statements

5. Subscript: []
Square brackets are used for subscripting. The subscripted operand
appears before the brackets and the subscript operand appears within the
brackets. When the subscript expression is not being assigned to, the
subscripted operand must be an array or a string. When the subscript

26 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

operator is the left operand of an assignment, the subscripted operand
must be an array (i.e., you cannot assign to the elements of a string).
Examples:

a = {4, 3, 2, 1};
b = {{3, 5}, {2, 4}};
s = "here we go";
c = s[2]; //it's 'r'
a[1] = b[0][1]; //it's 5

6. Array Initializer: { }

Curly braces are used for array initializers. The result of an array initializer
is a newly created array. The elements of the array are specified by a
series of comma separated values inside the braces. In the subscript
example above, the variable a contains a 4-element array of numbers,
indexed with integers 0, 1, 2 and 3. Array initializers can specify non-
consecutive integer indexes and non-integer indexes. For example:

a = {10:4, 20:3, //non-consecutive indexes
30:2, 40:1};

name = {"first":"joe", //non-integer indexes
"last":"smith"};

7. Function Call: ()

A name followed by a left parenthesis indicates a function call. The
arguments to the call, if any, are a comma separated series of expression
within the parentheses. For example:

sine = Math.sin(angle);
menu = Window.menu({"inches", "feet", "yards"},

"From ");
date = dateAndTimeNow();

It is required that the function being called is actually defined and that the
number of aruments in the call is the same as the number of arguments in
the function definition; otherwise a runtime error will occur. In the example
above, the sin function call is qualified with the name of the poplet in which
the sin function is defined. This is necessary when the function call and
the function definition are in different poplets.

Handscript allows a call to use a variable function name string. In this
case, the name must not be qualified with the Poplet module name. For
example:

functions = {"sin", "cos", "tan"};
trig = functions[i];
return Math[trig](x);

27 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

In the example above, the variable containing the function name is
enclosed in parentheses to indicate that the name is computed.
Otherwise, it looks like a call of a function called “trig”.

8. Value Type: typeof
This is a unary operator that returns a string describing a value type. For
the primitive values typeof returns: “Number”, “String”, “Array” and
“Undefined”. For object values typeof returns a string containing the name
of the module defining the object type.

9. Object Creation: new
This is a unary operator that creates a new object. The argument is a
string identifying the type of object to create. This is the same as the
name of the Poplet module which defines the object’s code.

Statements
Let’s look at the hierarchy of language concepts we have in Handscript. There
are: poplets, functions, statements and expressions. Generally, a Poplet module
consists of one or more functions, a function consists of one or more statements,
and a statement consists of one or more expressions.

Expression Statements
An expression followed by a semicolon is a statement. For example:

j+k;
n = m*5;
initGlobals();

Notice that an expression statement must change something (a variable, an
array element, an external database) to do something useful. The first statement
above doesn’t accomplish anything useful; it computes a sum which is then
discarded.

Compound Statements
A compound statement turns a series of statements into a single statement by
enclosing them in curly braces. For example:

//convert byte to hex
{

digits = "0123456789ABCDEF";
d1 = byte>>4;
d2 = byte&0xF;
answer = digits[d1..d1]+digits[d2..d2];

}

Many of the statements described below require single statements as part of
their syntax, so compound statements are frequently used to turn multiple

28 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

statements into a single statement in these cases. Note that a compound
statement does not end with a semicolon.

Compound statements and array initializers both begin with a left brace. How
can you tell which is which? If the left brace begins a statement, it begins a
compound statement. If the left brace is within an expression, it begins an array
initializer. For example:

{x = x1+x2; y = y1+y2} //a compound statement
a = {x = x1+x2, y = y1+y2}; //an array initializer

Statements - if
The if statement is a control statement that allows you to conditionally execute
code. There are two forms of the if statement. They are:

if (expression)
 statement

and:

if (expression)
 statement1
else
 statement2

In the first form, expression is evaluated, and if the result is true statement is
executed. If the result is false, statement is not executed. In the second form,
expression is evaluated, then if the result is true statement1 is executed,
whereas if the result is false statement2 is executed. Now you can see why
compound statements are needed: if you want to conditionally execute a series
of statements, you put them inside a single compound statement. For example:

if (v[i] < v[lo]){ //exchange entries
 temp = v[i];
 v[i] = v[lo];
 v[lo] = temp;
}

The indentation above is optional. It is done to improve the readability of the
code. Often if statements are nested within if statements and the indentation is a
big help in making the code understandable. Here is an example of nested if
statements:

if (direction=="down"){ //scroll down
 if (numberLines!=0){
 gotoLine(CurrentLine+numberLines);
 }
} else { //scroll up
 if (numberLines!=0){

29 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

 gotoLine(CurrentLine-numberLines);
 }
}

Statements - while
The while statement is a looping statement that allows you to execute code
repeatedly. The while statement has the following form:

while (expression)
 statement

The while statement works as follows. The expression is evaluated. If it is
false, the while statement is finished, and control proceeds to the next
statement in the program. If the expression evaluates to true, then statement
(making up the body of the loop) is executed. At this point the cycle repeats, until
evaluation of the expression is false. Here is an example while loop:

sum = i = 0;
while (i < #a)
 sum += a[i++];

The while loop above sums the elements of an array. The array index i starts at
zero and is incremented by 1 every time through the loop. The loop terminates
when i >= the number of elements in the array.

Statements - do while
The do while statement is another looping statement. It has the following
form:

do statement
while (expression)

The do while statement works similarly to the while statement. First the loop
body statement is executed. Then the while expression is evaluated, and, if
true the loop is repeated. The difference between do while and while
statements is this. In the do while statement, the loop body statement is
always executed at least once, whereas in the while statement, the loop body
statement may be executed zero times. Another way to look at is that the while
statement has the test at the top (before the statement), whereas the do while
statement has the test at the bottom (after the statement). Here is an example of
a do while loop:

do {
 cmd = getCommand();
 processCommand(cmd);
while (cmd!="stop");

Statements - for
The for statement is another looping statement. It has the following form:

30 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

for (initialize; test; increment)
 statement

The meaning of the for statement can be illustrated with this equivalent while
loop:

initialize;
while (test){
 statement
 increment;
}

The for statement is so often used because it captures the key elements of a
typical loop in a single place, within the parentheses. Here is an earlier example
rewritten to use a for loop:

sum = 0;
for (i=0; i<#a; i++)
 sum += a[i];

Statements - for in
The for in statement is a loop specifically for iterating over an array. The form of
the for in statement is as follows:

for (variable in array)
 statement

The variable above must be a variable. The array must evaluate to an array.
Recall that an array in its most general form is a collection of pairs of indexes and
values. This statement iterates through the pairs, assigning the index of a pair
to variable for each iteration of the loop. For example:

names = {"jim":"carey", "ben":"afleck",
 "julia":"roberts"};
for (first in names){
 last = names[first];
 ^(first + " " + last);
}

The example above assigns the strings "jim", "ben" and "julia"
successively to the variable first. Then the concatenated first and last name
are displayed in an alert. Note that the order of assignment of the indexes is not
necessarily the order that the indexes are declared in the initializer. In general
the order is not predictable.

Statements - break
The break statement must appear in a loop. It causes an exit from the innermost
loop in which it appears. For example:

for (i=0; i<#a; i++){

31 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

 if (a[i]==searchKey) break;
}

The example above searches an array for a matching search key. If it finds one,
the break statement causes a loop exit, with the variable i containing the index
of the matching entry. If there is no matching entry, the loop is exited with
i==#a, which is greater than all valid array indexes.

Statements - continue
The continue statement must appear within a loop. It is similar to the break
statement, but rather than causing a loop exit, it causes the next iteration of the
loop to begin. In a while loop, the specified test expression is evaluated, and if
true the loop body executed. In a for loop, the increment expression is
evaluated, then the test expression is evaluated to see if another iteration should
be done. In a for in loop, the loop is started at the beginning of its loop body
statement with the next index being assigned to the loop variable.

The continue statement in effect aborts the current loop iteration and proceeds to
the next iteration. For example:

oddCount = 0;
for (i=0; i<#a; i++){
 if ((a[i]&1)==0) continue; //it’s even
 oddCount++;
}

Statements - var
The var statement provides a way to explicitly declare and initialize local
variables. The form of the var statement is the keyword var followed by a
comma separated list of variable names and optional initialization expressions.
For example:

var i, j, k;
var start = 3, end = start+5;

Since variables need not be declared before they are used, the var statement is
optional. The effect of the second var statement above could also be
accomplished as follows:

start = 3; end = start+5;

Statements - function
In order for a function to be called, the function must be defined. The function
statement defines a new function. The form of a function statement is as follows:

function name(arguments){
 statements
}

32 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

The function name is a single identifier, it is not qualified with the function’s
poplet name. arguments is a list of comma separated argument names. These
names are variables within the statements of the function. When the function is
called, the arguments are assigned the values specified in the function call
expression. The number of arguments in the function definition and in a function
call must match. Here are examples of function definitions:

//Display "Hello World!" in alert box
function main(arg){
 ^"Hello World!";
}

//Answer the mean (average) of the elements of array
function mean(array){
 answer = 0;
 for (i=0; i<#array; i++)
 answer += array[i];
 return #array==0 ? 0 : answer/#array;
}

//Answer n factorial – a recursive function
function factorial(n){
 return n<2 ? 1 : n*factorial(n-1);
}

Statements - return
The return statement is used to exit a function and to specify the value returned
by the function. The form of a return statement is the return keyword,
optionally followed by a return value expression and concluded with a semicoln.
If the return statement does not specify a value, the value returned by the
function is 0.

A function does not have to contain a return statement. For example, see the
function main shown above. Such a function exits and returns a value of 0 after
executing its final statement.

The Empty Statement
The empty statement is simply a semicolon. It performs no action, but can still
be useful. For example, here is a search loop with an empty statement body.

//search for "joe"
for (i=0; i<#names && names[i]!="joe"; i++) ;

33 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

Base Modules

Base modules are physically bundled with the Poplet Kit. They are always
present and cannot be changed. Therefore base module functions can be called
from any module. The base modules are Object, Application, Array, C, Clip,
Date, Math, Number, OS, String, Undefined, URL and Window. Many of these
correspond to the Javascript core and client builtin objects.

Object
Object is the supermodule of all other modules. All of its functions are available
to other object, unless redefined in a submodule. Object functions are:

eval(script)
 Evaluate script as a Handscript expression, e.g., eval(“1+2”);
parseFloat(string)

Convert string to a number.
parseInt(string)

Convert string to an integer
toString()

Convert this to a string
unescape(string)

Answer new string which is string with all %XX escape sequences
replaced by single-character equivalent.

valueOf()
Answer primitive value for numbers, strings and arrays

Application
Application is the supermodule of all Ami modules. Ami modules have two
purposes: (1) to get control when the Poplet menu is requested, to perform
application-specific processing (e.g., display an application menu instead of
global Poplet menu), and (2) to allow application-specific implementations of
getting text selections and returning text results (see the WordSmith Ami module
Ami_WrdS).

An Ami module has a name of the form “Ami_XXXX”. When the Poplet button is
tapped, if the currently running application has a creator ID that is identical to the
‘XXXX’ of some Ami module, then there is said to be a matching Ami module.
When there is a matching Ami module, the target object for following operations
is an instance of the matching Ami module. When there is no matching Ami
module, the target object for following operations is an instance of Application.
Application functions are:

doMenu(launchCode)
Popup standard poplet menu with no application extensions.
Argument launchCode is used by those Ami modules that use two-
phase clipboard copy to get text selection, value = 0 for first phase
(start copy to clipboard), value = 1 for second phase (text is

34 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

available in clipboard). This function is only called by the Poplet
Kit.

enqueueRelaunch(launchCode)
Sets launchCode and implements getting control after clipboard
copy.

getClipboardText()
Answer clipboard text contents.

getTextSelection()
Answer text selection string, or “” if none.

insertAfterSelection(string)
Insert string after selection. Answer false if application field read-
only.

invokePoplet(name)
Invoke poplet module name on selection. Display result after
selection, or if application is read-only, display result in dialog.

isFormID(n)
Answer true if current form ID == n. Allows Ami modules to be form
specific. See AppDiscover, which displays current application
creator ID and form ID.

popletMenu()
Display standard poplet menu.

replaceSelection(string)
Replace selection with string. Answer false if application read-only.

setInsertionPoint(n)
Set insertion point to offset n within current selection. Used by
compiler to identify position of syntax errors.

startSelectionCopy()
Strart selection copy to clipboard (if no direct copy selection
possible) and answer true if two-phase selection.

Array
Array defines functions usable by array objects. Array functions are:

concat(array2)
Answer an array consisting of the concatenation of this and
array2.

join(separator)
Answer a string representing the concatenation of all elements of
this, separated by optional separator string.

reverse()
Reverse elements of this in place.

sort()
Sort elements of this in ascending order.

sortFromTo(lo, hi)
Sort elements of this in ascending order from index lo to hi.

toString()
Answer this converted to a string

35 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

C
C contains support for low-level C language operations, used mainly in order to
perform OS calls. C functions are:

free(pointer)
Free memory at integer address pointer.

getFloat64(pointer)
Answer 64-bit float at integer address pointer.

getInt16(pointer)
Answer signed 16-bit integer at integer address pointer.

getInt32(pointer)
Answer signed 32-bit integer at integer address pointer.

getInt8(pointer)
Answer signed 8-bit integer at integer address pointer.

getUInt16(pointer)

Answer unsigned 16-bit integer at integer address pointer.
getUInt32(pointer)

Answer unsigned 32-bit integer at integer address pointer.
getUInt8(pointer)

Answer unsigned 8-bit integer at integer address pointer.
malloc(size)

Allocate memory of size bytes and answer integer pointer. Abort if
memory not available

setFloat64(pointer, value)
Set 64-bit float at integer address pointer to value.

setInt16(pointer, value)
Set 16-bit signed integer at integer address pointer to value.

setInt32(pointer, value)
Set 32-bit signed integer at integer address pointer to value.

setInt8(pointer, value)
Set 8-bit signed integer at integer address pointer to value.

setUInt16(pointer, value)
Set 16-bit unsigned integer at integer address pointer to value.

setUInt32(pointer, value)
Set 32-bit unsigned integer at integer address pointer to value.

setUInt8(pointer, value)
Set 8-bit unsigned integer at integer address pointer to value.

Clip
Clip generates Palm Query Applications (PQAs). Call Clip function to generate
related html entries, e.g., Clip.b(contents) for bold contents. See related
Handwave document “Poplet Kit and Web Clipping” for descriptions of Clip
functions.

36 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

Date
Date supports operations on dates. Date functions are:

selectDay()
Answer a date object from date selector, or undefined if cancel.

Math
Math supports all the Javascript Math object functions and most of the MathLib
functions. It requires MathLib to be installed on device. Math functions are:

abs(x)
Answer absolute value of x.

acos(x)
Answer the arccosine of x.

acosh(x)
Answer the hyperbolic arccosine of x.

asin(x)
Answer the arcsine of x.

asinh(x)
Answer the hyperbolic arcsine of x.

atan(x)
Answer the arctangent of x.

atanh(x)
Answer the hyperbolic arctangent of x.

cbrt(x)
Answer the cube root of x.

ceil(x)
Answer x if x is an integer, otherwise answer the next integer
greater than x.

cos(x)
Answer the cosine of x.

cosh(x)
Answer the hyperbolic cosine of x.

exp(x)
Answer e raised to the power of x.

floor(x)
Answer x if x is an integer, otherwise answer the next integer less
than x.

log(x)
Answer the natural logarithm of x.

log10(x)
Answer the base 10 logarithm of x.

log2(x)
Answer the base 2 logarithm of x

main(string)
Popup a menu of math functions for the user to choose one to
apply to string converted to a number.

max(a, b)

37 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

Answer the greater of a and b.
min(a, b)

Answer the lesser of a and b.
random()

Answer a pseudo-random number between 0 and 1.
round(x)

Answer x rounded to nearest integer value away from 0.
sin(x)

Answer the sine of x.
sinh(x)

Answer the hyperbolic sine of x.
sqrt(x)

Answer the square root of x.
tan(x)

Answer the tangent of x.
tanh(x)

Answer the hyperbolic tangent of x.
trunc(x)

Answer x truncated to nearest integer value not greater than x.

Number
Number defines functions applicable to numeric values. Number functions are:

toString()
 Answer this converted to a string.

OS
OS contains many functions providing interfaces to Palm OS trap calls. See
Palm OS documentation for definitions of these trap calls. Functions are:

DmCloseDatabase(dbR)

DmCreateDatabase(card, name, creator, type, resDB)

DmDatabaseInfo(card, dbID, name, attr, vers, create,
 mod, back, modno, appi, sorti, type, creator)

DmDeleteDatabase(card, id)

DmFindDatabase(card, name)

DmGetNextDatabaseByTypeCreator(newSearch, stateP,
 type, creator, latest, cardP, dbIDP)

DmGetRecord(dbR, index)

DmNewHandle(dbR, size)

38 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

DmNewRecord(dbR, indexP, size)

DmOpenDatabase(card, id, mode)

DmOpenDatabaseInfo(dbR, idP, openCtP, modeP, cardP,
 isResP)

DmQueryRecord(dbR, index)

DmReleaseRecord(dbR, index, dirty)

DmRemovRecord(dbR, index)

DmResizeRecord(dbR, index, size)

DmSetDatabaseInfo(card, dbID, name, attrs, vers,
 crDate, modDate, bckUpDate, modNum, appInfoID,
 sortInfoID, type, creator)

DmWrite(to, offset, from, size)

FldGetAttributes(field, attrP)

FldGetSelection(field, startP, endP)

FldGetTextPtr(field)

FldInsert(field, text, length)

FldSetInsertionPoint(field, position)

FldSetSelection(field, start, end)

FrmGetActiveForm()

FrmGetActiveFormID()

FrmGetFocus(form)

FrmGetNumberOfObjects(form)

FrmGetObjectPtr(form, index)

FrmGetObjectType(form, index)

FtrGet(creator, featureNum, valueP)

39 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

FtrSet(creator, featureNum, value)

MemHandleLock(handle)

MemHandleSize(handle)

MemHandleToLocalID(handle)

MemLocalIDToLockedPtr(id, card)

MemMove(to, from, byteCount)

MemPtrSetOwner(ptr, owner)

MemPtrUnlock(ptr)

MemSet(ptr, num, value)

StrCopy(to, from)

StrLen(string)

StrNCopy(to, from, length)

SysAppLaunch(card, id, flags,cmd, param, resultP)

SysUIAppSwitch(card, id, code, param)

TblGetCurrentFld(table)

TimGetSeconds()

TimGetTicks()

String
String defines functions for string values. Functions are:

fromCharCode(char)
Answer one character string containing character with value char.

indexOf(substring, start)
Answer index of first occurrence of substring in this, beginning
at optional start index. If start is omitted, search begins at
index 0.

isVowel()
Answer true if first character of this is a vowel.

lastIndexOf(substring, start)

40 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

Answer index of last occurrence of substring in this, beginning
at start index. If start is omitted, search begins at index 0.

newString(length)
Answer new empty string with capacity for length characters.
(Used for calling C code).

split(delimitor)
Answer an array of substrings of this delimited by string
delimitor.

substring(from, to)
Answer substring of this where from is index of first character, to
is optional index+1 of last character.

toLowerCase()
Answer a new string which is this with all letters lowercase.

toString()
Answer this.

trim()
Answer new string equal to this with no leading and trailing white
space.

Undefined
Undefined defines functions for undefined values. Functions are:

toString()
Answer this converted to a string.

URL
URL defines functions for URL strings. Functions are:

goto(url)
Launch Clipper on url string.

objectToQuery(object)
Converts object name/value pairs to a query string of form:

"name1=value1&name2=value2& … "
queryToObject(query)

Converts query string of form:
"name1=value1&name2=value2& … "

to an object o where:
o.name1="value1", o.name2="value2", …

script(query)
Evaluate script in query string, the form submit part after “?”.
1. Convert ‘name=value’ pairs into an object
2. Get script string.
3. Unescape script – replace “%XX” s with single characters
4. Evaluate script with object as target

submit(object)
Submit object of fields to the URL string value in url field. Convert
object name/value’s into query part of url string.

41 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

Window
Window defines user interface functions. Functions are:

abort(message)
Display message string in dialog, then abort execution.

alert(message)
Display message string in alert dialog.

confirm(message)
Display message string in dialog. Answer true if OK button tapped,
else false.

menu(choices, title)
Popup a menu of choices (an array of strings). Place optional
title in menu bar. Answer index of choice, or –1 if none.

popletMenu(choices, title)
Popup a combined menu of local choices (an array of strings)
followed by poplet menu. Place optional title in menu bar.
Answer index of local choice, or –1 if none or poplet entry.

prompt(message, default)
Popup prompter dialog with message and default answer.
Answer response string, (a zero length string if user cancels).

OS and C Calls
Handscript is a high-level language with a breadth of features to create many
useful applications. There are some applications which by their nature need to
call the Palm OS or other C code. For example, an application which lists all
databases on the device needs to call the OS to identify the databases. This
section describes the Handscript facilities for calling C code. To use these
facilities requires some understanding of the underlying C and Handscript
implementations.

The OS base module contains functions which encapsulate many of the Palm
OS calls. Browse the OS source code to see if the functions you need are
already included.

What Does a Handscript to C Call Do
A Handscript to C call needs to satisfy the C interface. There is a Handscript call
stack and a C call stack. The Handscript values must be converted to the C
argument types and pushed on the C stack. Then a “trap call” instruction is done
to invoke the C code. Upon return from C, the C stack arguments are discarded,
the C result type is converted to a Handscript type and the result is pushed on
the Handscript stack. Fortunately, most of these details are handled
automatically by the C call mechanism.

C Argument and Return Types Supported

42 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

The following C argument types are supported:
Int8 Int16 Int32 Float64
UInt8 UInt16 UInt32 MemPtr
Int8 * Int16 * Int32 * Float64 *
UInt8 * UInt16 * UInt32 *

The following C return types are supported:
Int8 Int16 Int32 MemPtr
UInt8 UInt16 UInt32 Void

The Trap Call Statement
HandScript code calls C code using the Palm OS supported trap call
mechanism. This enables calling the operating system as well as calling C code
that has been packaged as a dynamic library. C interfaces are defined in terms
of typed arguments. The Handscript trap call syntax is as follows:
 [returnType trapSelector cArguments]

The returnType is one of the eight return types listed above. See the section
below on trap selectors. The cArguments is a (possibly empty) list of arguments.
Each argument has the form:

, argumentType argumentValue

The argumentType is one of the 15 argument types listed above. The
argumentValue is any Handscript expression. Here is an example of the trap call
statement:
 //Call OS TimGetSeconds()
 seconds = [UInt32 0xA0F5];

This example calls TimGetSeconds, which has no argument. The result is a 32-
bit unsigned integer. A more comprehensive example is the following:

//Call DmNextDatabaseByTypeCreator
err = [UInt16 0xA078, UInt8 newSearch, MemPtr state,
 UInt32 type, UInt32, creator, UInt8 onlyLatest,
 UInt16Ptr &card, UInt32Ptr &dbID];

In this example, the return type is UInt16, the trap selector for
DmGetNextDatabaseByTypeCreator is 0xA078, and the remaining elements are
pairs of argument types and values. Arguments are pushed C-style, right-to-left.
Each argument gets converted to the specified type before the call is done.
C Pointer Arguments
Passing pointer arguments from a language that doesn't have pointers requires
some understanding of C. There are two separate cases, both illustrated in the
example above: (1) pointers to Strings and structs, and (2) pointers to numbers.
There are nine C types ending in "Ptr" (see above for a the complete list of
types). One type, MemPtr, is used for passing strings and structs. The other 8 C
pointer types are used for passing pointers to various kinds of integer and

43 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

floating point numbers.

For MemPtr, valid HandScript argument types are string and integer. For
MemPtr with a HandScript integer argument, the integer value is passed. Use an
integer to pass a null (zero) pointer. If an integer is non-zero, it must be a valid C
address - most likely obtained by an earlier C call. For MemPtr with a
HandScript string argument, the address of the string is passed.

For the C pointer to number types, for example UInt16Ptr, pass the address of a
HandScript variable that contains the number or will receive the number. This is
done using the "&" operator (see example above and &card argument value).
Note that a pointer can be used to pass a value in to a C call, receive a value out
from a C call, or both. HandScript cannot know which is the case, so it assumes
both. One implication of this is that if a pointer to a variable is passed,
HandScript requires that the variable contains a number, even if the argument is
output only.

Trap Selectors
The trap selector is the 16-bit argument to the hardware trap instruction that
identifies which C routine to call. The trap selector values for the Palm OS are
defined in include file CoreTraps.h.

HandScript supports a variant of the selector: when the selector value is greater
than 0xFFFF, it is a selector pair. In this case, the higher-order 16 bits is the trap
selector, and the lower order 16 bits is the sub-selector, which is pushed on the
stack before the call. This form is used to call the Handspring API.

A Final Caution
Calling C from HandScript should be done carefully. A HandScript-only
environment is crash free (theoretically at least), in that catastrophic user errors
normally are detected and reported. On the other hand, calling C code from
HandScript and passing bad arguments will very often cause a crash that
requires a system reset.

44 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

III. HandScript Syntax

Lexical Grammar
Tokens
 token:
 keyword
 identifier
 constant
 string-literal
 operator
Keywords
 keyword: one of
 break continue div do
 else false for if
 undefined return true var
 while
Identifiers
 identifier: one of
 nondigit
 identifier nondigit
 identfier digit

 nondigit: one of
 _
 a b c d e f g h i j k l m
 n o p q r s t u v w x y z
 A B C D E F G H I J K L M
 N O P Q R S T U V W X Y Z

 digit: one of
 0 1 2 3 4 5 6 7 8 9
Constants
 constant:
 floating-constant
 integer-constant
 character-constant
 true
 false
 undefined

45 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

 floating-constant:
 fractional-constant exponent-part
 digit-sequence exponent-part

 fractional-constant:
 digit-seqenceopt . digit-sequence
 digit-sequence .

 exponent-part:
 e signopt digit-sequence
 E signopt digit-sequence

 sign: one of
 + -

 integer-constant:
 decimal-constant
 octal-constant
 hexadecimal-constant
 character-constant

 decimal-constant:
 nonzero-digit
 decimal-constant digit

 nonzero-digit: one of
 1 2 3 4 5 6 7 8 9

 octal-constant:
 0
 octal-constant octal-digit

 octal-digit: one of
 0 1 2 3 4 5 6 7

 hexadecimal-constant:
 0x hexadecimal-digit
 0X hexadecimal-digit
 hexadecimal-constant hexadecimal-digit

46 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

 hexadecimal-digit: one of
 0 1 2 3 4 5 6 7 8 9
 a b c d e f
 A B C D E F

 character-constant:
 0csingle-quote-char
 0Csingle-quote-char

String Literals
 string-literal:
 "double-quote-sequenceopt"
 'single-quote-sequenceopt'

 double-quote-sequence:
 double-quote-char
 double-quote-sequence double-quote-char

 single-quote-sequence:
 single-quote-char
 single-quote-sequence single-quote-char

 double-quote-char:
 escape sequence

any member of the source character set except
the double-quote " backslash \ or new-line
character

 single-quote-char:
 escape sequence

any member of the source character set except
the single-quote ' backslash \ or new-line
character

 escape-sequence:
 simple-escape-sequence
 octal-escape-sequence
 hexadecimal-escape-sequence

47 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

 simple-escape-sequence: one of
 \' \" \? \\
 \a \b \f \n \r \t \v

 octal-escape-sequence:
 \octal-digit
 \octal-digit octal-digit
 \octal-digit octal-digit octal-digit

 hexadecimal-escape-sequence:
 \x hexadecimal-digit
 hexadecimal-escape-sequence hexadecimal-digit

 unicode-escape-sequence:

 \u hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-
digit

Operators
 operator: one of
 [] () { }
 ++ -- & * + - ~ !
 / % << >> < > <= >= == != ^ | && ||
 = *= /= %= += -= <<= >>= &= ^= |=
 , # ## @ ? : ->
Phrase Structure Grammar
Expressions
 primary:
 constant
 string-literal
 (expression)
 array-initializer
 trap-call
 identifier-or-call

 array-initializer:
 { element-listopt }

 element-list:
 element
 element-list , element

48 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

 element:
 expression
 expression : expression

 trap-call:
 [type trap-selector trap-argumentsopt]

 type: one of
 Int8 Int16 Int32 UInt8 UInt16 UInt32 Float64
 Int8Ptr Int16Ptr Int32Ptr UInt8Ptr UInt16Ptr UInt32Ptr Float64Ptr
 MemPtr Void

 trap-selector:
 expression

 trap-arguments:
 trap-argument
 trap-arguments , trap-argument

 trap-argument:
 type expression

 identifier-or-call:
 identifier argumentsopt

 arguments:
 (argument-listopt)

 argument-list:
 expression
 argument-list, expression

 member-expression:
 primary
 member-expression [subscript-expression]
 member-expression . identifier-or-call

 subscript-expression:
 expression
 expression .. expression

49 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

 postfix-expression:
 member-expression
 member-expression ++
 member-expression --

 unary-expression:
 postfix-expression
 ++ unary-expression
 -- unary-expression
 unary-operator unary-expression
 & name

 unary-operator: one of
 + - * ~ ! # ## @ ^ typeof

 multiplicative-expression:
 unary-expression
 multiplicative-expression * unary-expression
 multiplicative-expression / unary-expression
 multiplicative-expression div unary-expression
 multiplicative-expression % unary-expression

 additive-expression:
 multiplicative-expression
 additive-expression + multiplicative-expression
 additive-expression - multiplicative-expression

 shift-expression:
 additive-expression
 shift-expression << additive-expression
 shift-expression >> additive-expression

 relational-expression:
 shift-expression
 relational-expression < shift-expression
 relational-expression > shift-expression
 relational-expression <= shift-expression
 relational-expression >= shift-expression

50 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

 equality-expression:
 relational-expression
 equality-expression == relational-expression
 equality-expression != relational-expression

 and-expression:
 equality-expression
 and-expression & equality-expression

 exclusive-or-expression:
 and-expression
 exclusive-or-expression ^ and-expression

 inclusive-or-expression:
 exclusive-or-expression
 inclusive-or-expression | exclusive-or-expression

 conditional-and-expression:
 inclusive-or-expression
 conditional-and-expression && inclusive-or-expression

 conditional-or-expression:
 conditional-and-expression
 conditional-or-expression || conditional-and-expression

 conditional-expression:
 conditional-or-expression
 conditional-or-expression ? expression : conditional-expression

 assignment-expression:
 conditional-expression
 member-expression assignment-operator assignment-expression

 assignment-operator: one of
 = *= /= div= %= += -= <<= >>= &= ^= |=

 expression:
 assignment-expression
 expression , assignment-expression

51 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

Statements
 statement:
 expression-statement
 selection-statement
 iteration-statement
 jump-statement
 var-statement

 block:
 { statement-listopt }
 statement

 statement-list:
 statement
 statement-list statement

 expression-statement:
 expressionopt ;

 selection-statement:
 if (expression) block
 if (expression) block else block

 selection-statement:
 while (expression) block
 do block while (expression)
 for (expressionopt ; expressionopt ; expressionopt) block
 for (name in expression) block

 jump-statement:
 continue ;
 break ;
 return expressionopt ;

 var-statement:
 var variable-declaration-listopt ;

 variable-declaration-list:
 variable-declaration
 variable-declaration-list , variable-declaration

52 Handscript: The Poplet Programming Language

© Copyright 2001, Handwave Inc., All rights reserved

 variable-declaration:
 name variable-initializeropt

 variable-initializer:
 = conditional-expression
Functions
 function:
 function name (name-listopt) block

 name-list:
 name
 name-list , name

